
Let C_1 and C_2 be two circles with C_2 lying inside C_1 . A circle C lying inside C_1 touches C_1 internally and C_2 externally. Identify the locus of the centre of C.

[2001 - 5 Marks]

Sol 5.

Let centre of C be (h, k) and radius be r, then by the given conditions.

$$\sqrt{(h-a)^2+(k-b)^2}=r+r_2$$
 and $\sqrt{h^2+k^2}=r_1-r_2$

$$\Rightarrow \sqrt{(h-a)^2 + (k-b)^2} + \sqrt{h^2 + k^2} = r_1 + r_2$$

Equation of required locus is

$$\sqrt{(x-a)^2 + (y-b)^2} + \sqrt{x^2 + y^2} = r_1 + r_2,$$

which represents an ellipse whose foci are at (a, b) and (0, 0).

[: $PS + PS' = \text{constant} \Rightarrow \text{locus of } P \text{ is an ellipse with foci at } S \text{ and } S'$]